Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 123
Filter
1.
Emerg Microbes Infect ; 13(1): 2295387, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38088554

ABSTRACT

Household contacts (HHCs) of patients with active tuberculosis (ATB) are at higher risk of Mycobacterium tuberculosis (M. tuberculosis) infection. However, the immune factors responsible for different defense responses in HHCs are unknown. Hence, we aimed to evaluate transcriptome signatures in human peripheral blood mononuclear cells (PBMCs) of HHCs to aid risk stratification. We recruited 112 HHCs of ATB patients and followed them for 6 years. Among the HHCs, only 2 developed ATB, while the remaining HHCs were classified into three groups: (1) HHC-1 group (n = 23): HHCs with consistently positive T-SPOT.TB test, negative chest radiograph, and no clinical symptoms or evidence of ATB during the 6-year follow-up period; (2) HHC-2 group (n = 15): HHCs with an initial positive T-SPOT result that later became negative without evidence of ATB; (3) HHC-3 group (n = 14): HHCs with a consistently negative T-SPOT.TB test and no clinical or radiological evidence of ATB. HHC-2 and HHC-3 were combined as HHC-23 group for analysis. RNA sequencing (RNA-seq) in PBMCs, with and without purified protein derivative (PPD) stimulation, identified significant differences in gene signatures between HHC-1 and HHC-23. Gene ontology analysis revealed functions related to bacterial pathogens, leukocyte chemotaxis, and inflammatory and cytokine responses. Modules associated with clinical features in the HHC-23 group were linked to the IL-17 signaling pathway, ferroptosis, complement and coagulation cascades, and the TNF signaling pathway. Validation using real-time PCR confirmed key genes like ATG-7, CXCL-3, and TNFRSF1B associated with infection outcomes in HHCs. Our research enhances understanding of disease mechanisms in HHCs. HHCs with persistent latent tuberculosis infection (HHC-1) showed significantly different gene expression compared to HHCs with no M. tuberculosis infection (HHC-23). These findings can help identify HHCs at risk of developing ATB and guide targeted public health interventions.


Subject(s)
Latent Tuberculosis , Mycobacterium tuberculosis , Tuberculosis, Pulmonary , Tuberculosis , Humans , Mycobacterium tuberculosis/genetics , Leukocytes, Mononuclear , Tuberculosis, Pulmonary/genetics , Tuberculosis/microbiology , Latent Tuberculosis/genetics , Latent Tuberculosis/diagnosis
2.
Ther Adv Respir Dis ; 17: 17534666231217798, 2023.
Article in English | MEDLINE | ID: mdl-38131281

ABSTRACT

BACKGROUND: Autophagy is closely involved in the control of mycobacterial infection. OBJECTIVES: Here, a diagnostic model was developed using the levels of autophagy-related genes (ARGs) in the blood to differentiate active tuberculosis (ATB) and latent tuberculosis infection (LTBI). DESIGN: Secondary data analysis of three prospective cohorts. METHODS: The expression of ARGs in patients with ATB and LTBI were analyzed using the GSE37250, GSE19491, and GSE28623 datasets from the GEO database. RESULTS: Twenty-two differentially expressed ARGs were identified in the training dataset GSE37250. Using least absolute shrinkage and selection operator and multivariate logistic regression, three ARGs (FOXO1, CCL2, and ITGA3) were found that were positively associated with adaptive immune-related lymphocytes and negatively associated with myeloid and inflammatory cells. A nomogram was constructed using the three ARGs. The accuracy, consistency, and clinical relevance of the nomogram were evaluated using receiver operating characteristic curves, the C-index, calibration curves, and validation in the datasets GSE19491 and GSE28623. The nomogram showed good predictive performance. CONCLUSION: The nomogram was able to accurately differentiate between ATB and LTBI patients. These findings provide evidence for future study on the pathology of autophagy in tuberculosis infection.


Subject(s)
Latent Tuberculosis , Mycobacterium tuberculosis , Tuberculosis , Humans , Latent Tuberculosis/diagnosis , Latent Tuberculosis/genetics , Prospective Studies , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Biomarkers , Tuberculosis/diagnosis , Tuberculosis/genetics , Autophagy
3.
Biomolecules ; 13(10)2023 10 18.
Article in English | MEDLINE | ID: mdl-37892223

ABSTRACT

Some genetic variations in cytokine genes can alter their expression and influence the evolution of Mycobacterium tuberculosis (Mtb) infection. This study aimed to investigate the association of polymorphisms in cytokine genes and variability in plasma levels of cytokines with the development of tuberculosis (TB) and latent tuberculosis infection (LTBI). Blood samples from 245 patients with TB, 80 with LTBI, and healthy controls (n = 100) were included. Genotyping of the IFNG +874A/T, IL6 -174G/C, IL4 -590C/T, and IL10 -1082A/G polymorphisms was performed by real-time PCR, and cytokine levels were determined by flow cytometry. Higher frequencies of genotypes AA (IFNG +874A/T), GG (IL6 -174G/C), TT (IL4 -590C/T), and GG (IL10 -1082A/G) were associated with an increased risk of TB compared to that of LTBI (p = 0.0027; p = 0.0557; p = 0.0286; p = 0.0361, respectively) and the control (p = <0.0001, p = 0.0021; p = 0.01655; p = 0.0132, respectively). In combination, the A allele for IFNG +874A/T and the T allele for IL4 -590C/T were associated with a higher chance of TB (p = 0.0080; OR = 2.753 and p < 0.0001; OR = 3.273, respectively). The TB group had lower levels of IFN-γ and higher concentrations of IL-6, IL-4, and IL-10. Cytokine levels were different between the genotypes based on the polymorphisms investigated (p < 0.05). The genotype and wild-type allele for IFNG +874A/T and the genotype and polymorphic allele for IL4 -590C/T appear to be more relevant in the context of Mtb infection, which has been associated with the development of TB among individuals infected by the bacillus and with susceptibility to active infection but not with susceptibility to latent infection.


Subject(s)
Latent Tuberculosis , Tuberculosis , Humans , Cytokines/genetics , Latent Tuberculosis/genetics , Interleukin-10/genetics , Interleukin-6/genetics , Brazil , Interleukin-4/genetics , Polymorphism, Single Nucleotide , Genetic Predisposition to Disease
4.
Tuberculosis (Edinb) ; 143: 102409, 2023 12.
Article in English | MEDLINE | ID: mdl-37729851

ABSTRACT

Type I interferon (IFN)-induced genes have the potential for distinguishing active tuberculosis (ATB) from latent TB infection (LTBI) and healthy controls (HC), monitoring treatment, and detection of individuals at risk of progression to active disease. We examined the differential effects of IFN-α, IFN-ß and Mycobacterium tuberculosis whole cell lysate (Mtb WCL) stimulation on the expression of selected IFN-stimulated genes in peripheral blood mononuclear cells from individuals with either LTBI, ATB, and healthy controls. Stimulation with IFN-α and IFN-ß induced a higher expression of the interrogated genes while Mtb WCL stimulation induced expression similar to that observed at baseline, with the exception of IL-1A and IL-1B genes that were downregulated. The expression of IFN-α-induced FCGR1A gene, IFN-ß-induced FCGR1A, FCGR1B, and SOCS3 genes, and Mtb WCL-induced IFI44, IFI44L, IFIT1, and IFITM3 genes differed significantly between LTBI and ATB. These findings suggest stimulation-driven gene expression patterns could potentially discriminate LTBI and ATB. Mechanistic studies are necessary to define the processes through which distinct type I IFNs and downstream ISGs determine infection outcomes and identify potential host-directed therapeutic strategies.


Subject(s)
Interferon Type I , Latent Tuberculosis , Mycobacterium tuberculosis , Tuberculosis , Humans , Mycobacterium tuberculosis/genetics , Latent Tuberculosis/diagnosis , Latent Tuberculosis/genetics , Interferon Type I/genetics , Leukocytes, Mononuclear , Antigens, Bacterial/genetics , Tuberculosis/diagnosis , Tuberculosis/genetics , Membrane Proteins , RNA-Binding Proteins
5.
BMC Genomics ; 24(1): 368, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37393262

ABSTRACT

BACKGROUND: Cell death plays a crucial role in the progression of active tuberculosis (ATB) from latent infection (LTBI). Cuproptosis, a novel programmed cell death, has been reported to be associated with the pathology of various diseases. We aimed to identify cuproptosis-related molecular subtypes as biomarkers for distinguishing ATB from LTBI in pediatric patients. METHOD: The expression profiles of cuproptosis regulators and immune characteristics in pediatric patients with ATB and LTBI were analyzed based on GSE39939 downloaded from the Gene Expression Omnibus. From the 52 ATB samples, we investigated the molecular subtypes based on differentially expressed cuproptosis-related genes (DE-CRGs) via consensus clustering and related immune cell infiltration. Subtype-specific differentially expressed genes (DEGs) were found using the weighted gene co-expression network analysis. The optimum machine model was then determined by comparing the performance of the eXtreme Gradient Boost (XGB), the random forest model (RF), the general linear model (GLM), and the support vector machine model (SVM). Nomogram and test datasets (GSE39940) were used to verify the prediction accuracy. RESULTS: Nine DE-CRGs (NFE2L2, NLRP3, FDX1, LIPT1, PDHB, MTF1, GLS, DBT, and DLST) associated with active immune responses were ascertained between ATB and LTBI patients. Two cuproptosis-related molecular subtypes were defined in ATB pediatrics. Single sample gene set enrichment analysis suggested that compared with Subtype 2, Subtype 1 was characterized by decreased lymphocytes and increased inflammatory activation. Gene set variation analysis showed that cluster-specific DEGs in Subtype 1 were closely associated with immune and inflammation responses and energy and amino acids metabolism. The SVM model exhibited the best discriminative performance with a higher area under the curve (AUC = 0.983) and relatively lower root mean square and residual error. A final 5-gene-based (MAN1C1, DKFZP434N035, SIRT4, BPGM, and APBA2) SVM model was created, demonstrating satisfactory performance in the test datasets (AUC = 0.905). The decision curve analysis and nomogram calibration curve also revealed the accuracy of differentiating ATB from LTBI in children. CONCLUSION: Our study suggested that cuproptosis might be associated with the immunopathology of Mycobacterium tuberculosis infection in children. Additionally, we built a satisfactory prediction model to assess the cuproptosis subtype risk in ATB, which can be used as a reliable biomarker for the distinguishment between pediatric ATB and LTBI.


Subject(s)
Latent Tuberculosis , Humans , Child , Latent Tuberculosis/diagnosis , Latent Tuberculosis/genetics , Apoptosis , Biomarkers , Cell Death , Cluster Analysis
6.
J Immunol Res ; 2023: 7829286, 2023.
Article in English | MEDLINE | ID: mdl-37228444

ABSTRACT

Background: Tuberculosis (TB), caused by the bacterium Mycobacterium tuberculosis, affects approximately one-quarter of the global population and is considered one of the most lethal infectious diseases worldwide. The prevention of latent tuberculosis infection (LTBI) from progressing into active tuberculosis (ATB) is crucial for controlling and eradicating TB. Unfortunately, currently available biomarkers have limited effectiveness in identifying subpopulations that are at risk of developing ATB. Hence, it is imperative to develop advanced molecular tools for TB risk stratification. Methods: The TB datasets were downloaded from the GEO database. Three machine learning models, namely LASSO, RF, and SVM-RFE, were used to identify the key characteristic genes related to inflammation during the progression of LTBI to ATB. The expression and diagnostic accuracy of these characteristic genes were subsequently verified. These genes were then used to develop diagnostic nomograms. In addition, single-cell expression clustering analysis, immune cell expression clustering analysis, GSVA analysis, immune cell correlation, and immune checkpoint correlation of characteristic genes were conducted. Furthermore, the upstream shared miRNA was predicted, and a miRNA-genes network was constructed. Candidate drugs were also analyzed and predicted. Results: In comparison to LTBI, a total of 96 upregulated and 26 downregulated genes related to the inflammatory response were identified in ATB. These characteristic genes have demonstrated excellent diagnostic performance and significant correlation with many immune cells and immune sites. The results of the miRNA-genes network analysis suggested a potential role of hsa-miR-3163 in the molecular mechanism of LTBI progressing into ATB. Moreover, retinoic acid may offer a potential avenue for the prevention of LTBI progression to ATB and for the treatment of ATB. Conclusion: Our research has identified key inflammatory response-related genes that are characteristic of LTBI progression to ATB and hsa-miR-3163 as a significant node in the molecular mechanism of this progression. Our analyses have demonstrated the excellent diagnostic performance of these characteristic genes and their significant correlation with many immune cells and immune checkpoints. The CD274 immune checkpoint presents a promising target for the prevention and treatment of ATB. Furthermore, our findings suggest that retinoic acid may have a role in preventing LTBI from progressing to ATB and in treating ATB. This study provides a new perspective for differential diagnosis of LTBI and ATB and may uncover potential inflammatory immune mechanisms, biomarkers, therapeutic targets, and effective drugs in the progression of LTBI into ATB.


Subject(s)
Latent Tuberculosis , MicroRNAs , Mycobacterium tuberculosis , Tuberculosis , Humans , Tuberculosis/diagnosis , Tuberculosis/genetics , Latent Tuberculosis/diagnosis , Latent Tuberculosis/genetics , Mycobacterium tuberculosis/genetics , MicroRNAs/genetics , Biomarkers/metabolism
7.
PLoS One ; 18(4): e0284498, 2023.
Article in English | MEDLINE | ID: mdl-37058459

ABSTRACT

BACKGROUND: A mechanistic understanding of uncommon immune outcomes such as resistance to infection has led to the development of novel therapies. Using gene level analytic methods, we previously found distinct monocyte transcriptional responses associated with resistance to Mycobacterium tuberculosis (Mtb) infection defined as persistently negative tuberculin skin test (TST) and interferon gamma release assay (IGRA) reactivity among highly exposed contacts (RSTR phenotype). OBJECTIVE: Using transcript isoform analyses, we aimed to identify novel RSTR-associated genes hypothesizing that previous gene-level differential expression analysis obscures isoform-specific differences that contribute to phenotype. MATERIALS AND METHODS: Monocytes from 49 RSTR versus 52 subjects with latent Mtb infection (LTBI) were infected with M. tuberculosis (H37Rv) or left unstimulated (media) prior to RNA isolation and sequencing. RSTR-associated gene expression was then identified using differential transcript isoform analysis. RESULTS: We identified 81 differentially expressed transcripts (DETs) in 70 genes (FDR <0.05) comparing RSTR and LTBI phenotypes with the majority (n = 79 DETs) identified under Mtb-stimulated conditions. Seventeen of these genes were previously identified with gene-level bulk RNAseq analyses including genes in the IFNγ response that had increased expression among LTBI subjects, findings consistent with a clinical phenotype based on IGRA reactivity. Among the subset of 23 genes with positive differential expression among Mtb-infected RSTR monocytes, 13 were not previously identified. These novel DET genes included PDE4A and ZEB2, which each had multiple DETs with higher expression among RSTR subjects, and ACSL4 and GAPDH that each had a single transcript isoform associated with RSTR. CONCLUSION AND LIMITATIONS: Transcript isoform-specific analyses identify transcriptional associations, such as those associated with resistance to TST/IGRA conversion, that are obscured when using gene-level approaches. These findings should be validated with additional RSTR cohorts and whether the newly identified candidate resistance genes directly influence the monocyte Mtb response requires functional study.


Subject(s)
Latent Infection , Latent Tuberculosis , Mycobacterium tuberculosis , Humans , Interferon-gamma Release Tests/methods , Tuberculin Test/methods , Latent Tuberculosis/diagnosis , Latent Tuberculosis/genetics , Latent Tuberculosis/complications , Phenotype
8.
Curr Med Sci ; 42(6): 1201-1212, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36462134

ABSTRACT

OBJECTIVE: Current commercially available immunological tests cannot be used for discriminating active tuberculosis (TB) from latent TB infection. To evaluate the value of biomarker candidates in the diagnosis of active TB, this study aimed to identify differentially expressed genes in peripheral blood mononuclear cells (PBMCs) between patients with active TB and individuals with latent TB infection by transcriptome sequencing. METHODS: The differentially expressed genes in unstimulated PBMCs and in Mycobacterium tuberculosis (Mtb) antigen-stimulated PBMCs from patients with active TB and individuals with latent TB infection were identified by transcriptome sequencing. Selected candidate genes were evaluated in cohorts consisting of 110 patients with TB, 30 individuals with latent TB infections, and 50 healthy controls by quantitative real-time RT-PCR. Receiver operating characteristic (ROC) curve analysis was performed to calculate the diagnostic value of the biomarker candidates. RESULTS: Among the differentially expressed genes in PBMCs without Mtb antigen stimulation, interferon-induced protein with tetratricopeptide repeats 3 (IFIT3) had the highest area under curve (AUC) value (0.918, 95% CI: 0.852-0.984, P<0.0001) in discriminating patients with active TB from individuals with latent TB infection, with a sensitivity of 91.86% and a specificity of 84.00%. In Mtb antigen-stimulated PBMCs, orosomucoid 1 (ORM1) had a high AUC value (0.833, 95% CI: 0.752-0.915, P<0.0001), with a sensitivity of 81.94% and a specificity of 70.00%. CONCLUSION: IFIT3 and ORM1 might be potential biomarkers for discriminating active TB from latent TB infection.


Subject(s)
Latent Tuberculosis , Tuberculosis , Humans , Latent Tuberculosis/diagnosis , Latent Tuberculosis/genetics , Orosomucoid/metabolism , Leukocytes, Mononuclear/chemistry , Leukocytes, Mononuclear/metabolism , Tuberculosis/diagnosis , Tuberculosis/genetics , Biomarkers/metabolism , Intracellular Signaling Peptides and Proteins/metabolism
9.
Front Immunol ; 13: 1040947, 2022.
Article in English | MEDLINE | ID: mdl-36466831

ABSTRACT

Objectives: Human mitochondrial cell-free DNA (Mt-cfDNA) may serve as a useful biomarker for infectious processes. We investigated Mt-cfDNA dynamics in patients with pulmonary mycobacterial infections to determine if this novel biomarker could be used to differentiate disease states and severity. Methods: Patients with pulmonary tuberculosis (PTB), latent tuberculosis infection (LTBI), and nontuberculous mycobacterial-lung disease (NTM-LD) were enrolled at a tertiary care hospital in Taiwan between June 2018 and August 2021. Human Mt-cfDNA and nuclear-cfDNA (Nu-cfDNA) copy numbers were estimated by quantitative polymerase chain reaction. Variables associated with PTB and 2-month sputum culture-positivity, indicating poor treatment response, were assessed using logistic regression. Results: Among 97 patients with PTB, 64 with LTBI, and 51 with NTM-LD, Mt-cfDNA levels were higher in patients with PTB than in LTBI (p=0.001) or NTM-LD (p=0.006). In the Mycobacterium tuberculosis-infected population, Mt-cfDNA levels were highest in smear-positive PTB patients, followed by smear-negative PTB (p<0.001), and were lowest in LTBI persons (p=0.009). A Mt-cfDNA, but not Nu-cfDNA, level higher than the median helped differentiate culture-positive PTB from culture-negative PTB and LTBI (adjusted OR 2.430 [95% CI 1.139-5.186], p=0.022) and differentiate PTB from NTM-LD (adjusted OR 4.007 [1.382-12.031], p=0.011). Mt-cfDNA levels decreased after 2 months of treatment in PTB patients (p=0.010). A cutoff Mt-cfDNA level greater than 62.62 x 106 copies/µL-plasma was associated with a 10-fold risk of 2-month culture-positivity (adjusted OR 9.691 [1.046-89.813], p=0.046). Conclusion: Elevated Mt-cfDNA levels were associated with PTB disease and failed sputum conversion at 2 months in PTB patients, and decreased after treatment.


Subject(s)
Cell-Free Nucleic Acids , Latent Tuberculosis , Mycobacterium Infections, Nontuberculous , Pneumonia , Tuberculosis, Pulmonary , Humans , Cell-Free Nucleic Acids/genetics , Mitochondrial Dynamics , Tuberculosis, Pulmonary/diagnosis , Tuberculosis, Pulmonary/drug therapy , Tuberculosis, Pulmonary/genetics , Mycobacterium Infections, Nontuberculous/diagnosis , Biomarkers , Latent Tuberculosis/diagnosis , Latent Tuberculosis/genetics
10.
Turk J Med Sci ; 52(3): 649-657, 2022 Jun.
Article in English | MEDLINE | ID: mdl-36326316

ABSTRACT

BACKGROUND: In tuberculsosis (TB), miRNA has been used as a biomarker to distinguish between healthy individuals and TB patients. The aim of this study was to investigate (i) the association of the miRNA and cytokine expression levels, the course of tuberculosis infection, clinical forms and response to treatment, and (ii) the effects of genotypic features of bacteria on the course of tuberculosis and the relationship between miRNA and cytokine expressions and bacterial genotypes. METHODS: A total of 200 cases (100: culture positive active tuberculosis, 50: quantiferon positive latent tuberculosis infection and 50: quantiferon negative healthy controls) were included in the study. For the tuberculosis group at the time of admission and after treatment, for the latent tuberculosis infection and healthy control groups at the time of admission, miRNA and cytokine expressions were determined. Genotyping of M.tuberculosis isolates was performed by spoligotyping method. RESULTS: While, in the comparison of miRNA expressions between the pretreatment patient group and the healthy control group, there was a statistically significant decrease in the expression of miR-454-3p, miR-15a-5p, miR-590-5p, miR-381, and miR-449a in the Pulmonary TB group, there was no significant change in miRNA expression in extrapulmonary TB patients. When the cytokine expressions of the patient group and the healthy control group were compared before treatment, the expressions of all cytokines in the patient group decreased. However, the only cytokine that showed a significantly lower expression was IL12A in PTB patients. DISCUSSION: There is no significant relationship between the clinical course of the disease, cytokine and miRNA expression, and the genotype of the bacteria.


Subject(s)
Latent Tuberculosis , MicroRNAs , Mycobacterium tuberculosis , Tuberculosis , Humans , Latent Tuberculosis/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Cytokines , Tuberculosis/genetics , Mycobacterium tuberculosis/genetics
11.
Front Immunol ; 13: 1027472, 2022.
Article in English | MEDLINE | ID: mdl-36389769

ABSTRACT

Tuberculosis (TB), which is caused by Mycobacterium tuberculosis (Mtb), is one of the most lethal infectious disease worldwide, and it greatly affects human health. Some diagnostic and therapeutic methods are available to effectively prevent and treat TB; however, only a few systematic studies have described the roles of microRNAs (miRNAs) in TB. Combining multiple clinical datasets and previous studies on Mtb and miRNAs, we state that pathogens can exploit interactions between miRNAs and other biomolecules to avoid host mechanisms of immune-mediated clearance and survive in host cells for a long time. During the interaction between Mtb and host cells, miRNA expression levels are altered, resulting in the changes in the miRNA-mediated regulation of host cell metabolism, inflammatory responses, apoptosis, and autophagy. In addition, differential miRNA expression can be used to distinguish healthy individuals, patients with TB, and patients with latent TB. This review summarizes the roles of miRNAs in immune regulation and their application as biomarkers in TB. These findings could provide new opportunities for the diagnosis and treatment of TB.


Subject(s)
Latent Tuberculosis , MicroRNAs , Mycobacterium tuberculosis , Tuberculosis , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Tuberculosis/diagnosis , Tuberculosis/genetics , Mycobacterium tuberculosis/genetics , Latent Tuberculosis/diagnosis , Latent Tuberculosis/genetics , Biomarkers/metabolism , Immunologic Factors
12.
Article in English | MEDLINE | ID: mdl-36197420

ABSTRACT

Although tuberculosis (TB) is a serious public health concern, we still don't understand why only 10% of people infected will develop the disease. Apoptosis plays a role in the interaction of Mycobacterium tuberculosis (Mtb) with the human host and it may be modified by subtle alterations in the B-cell lymphoma 2 (BCL2) gene, an anti-apoptotic regulatory element. Therefore, we investigated whether there is an association between BCL2 polymorphisms and susceptibility to TB by analyzing 130 TB cases, 108 subjects with latent TB infection (LTBI), and 163 healthy controls (HC). Logistic regression was used to calculate odds ratios (ORs) and 95% confidential intervals (95% CIs) for possible associations between single nucleotide polymorphisms (SNPs) in BCL2 and the risk of tuberculosis. We found that the G allele of rs80030866 (OR=0.62, 95%CI:0.42-0.91, P=0.015), and also the G allele of rs9955190 (OR=0.58, 95%CI:0.38-0.88, P=0.011) were less frequent in the TB group compared with the LTBI group. In addition, individuals with rs2551402 CC genotype were more likely to have LTBI than those with AA genotype (OR=2.166, 95%CI:1.046-4.484, P=0.037). Our study suggests that BCL2 gene polymorphisms may be correlated with susceptibility to both TB and LTBI.


Subject(s)
Latent Tuberculosis , Mycobacterium tuberculosis , Tuberculosis , Asian People , Case-Control Studies , Genetic Predisposition to Disease/genetics , Humans , Latent Tuberculosis/genetics , Mycobacterium tuberculosis/genetics , Polymorphism, Single Nucleotide/genetics , Proto-Oncogene Proteins c-bcl-2/genetics , Tuberculosis/genetics
13.
Medicine (Baltimore) ; 101(42): e31065, 2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36281118

ABSTRACT

We aimed to identify long non-coding RNAs (lncRNAs) aberrantly expressed in peripheral blood mononuclear cells (PBMCs) triggered by active tuberculosis (ATB), latent tuberculosis infection (LTBI), and healthy controls (HC). We examined lncRNAs expression in PBMCs isolated from children with ATB and LTBI, and from HC using RNA sequencing. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were used to explore the biological processes and signaling pathways of aberrantly expressed mRNAs. A total of 348 and 205 lncRNAs were differentially expressed in the ATB and LTBI groups, respectively, compared to the HC group. Compared to the LTBI group, 125 lncRNAs were differentially expressed in the ATB group. Compared to the HC group, 2317 mRNAs were differentially expressed in the ATB group, and 1093 mRNAs were differentially expressed in the LTBI group. Compared to the LTBI group, 2328 mRNAs were differentially expressed in the ATB group. The upregulated mRNAs were mainly enriched in neutrophil activation, neutrophil-mediated biological processes, and positive regulation of immune response in tuberculosis (TB), whereas the downregulated mRNAs were enriched in signaling pathways and structural processes, such as the Wnt signaling pathway and rDNA heterochromatin assembly. This is the first study on the differential expression of lncRNAs in PBMCs of children with TB. We identified significant differences in the expression profiles of lncRNAs and mRNAs in the PBMCs of children with ATB, LTBI, and HC, which has important implications for exploring lncRNAs as novel biomarkers for the diagnosis of TB. In addition, further experimental identification and validation of lncRNA roles could help elucidate the underlying mechanisms of Mycobacterium tuberculosis infection in children.


Subject(s)
Latent Tuberculosis , RNA, Long Noncoding , Tuberculosis , Child , Humans , RNA, Long Noncoding/metabolism , Leukocytes, Mononuclear/metabolism , Heterochromatin/metabolism , Gene Expression Profiling , Tuberculosis/genetics , Latent Tuberculosis/genetics , Latent Tuberculosis/diagnosis , RNA, Messenger/metabolism , Biomarkers/metabolism , DNA, Ribosomal
14.
Front Immunol ; 13: 1011166, 2022.
Article in English | MEDLINE | ID: mdl-36248906

ABSTRACT

Background: Most individuals exposed to Mycobacterium tuberculosis (Mtb) develop latent tuberculosis infection (LTBI) and remain at risk for progressing to active tuberculosis disease (TB). Malnutrition is an important risk factor driving progression from LTBI to TB. However, the performance of blood-based TB risk signatures in malnourished individuals with LTBI remains unexplored. The aim of this study was to determine if malnourished and control individuals had differences in gene expression, immune pathways and TB risk signatures. Methods: We utilized data from 50 tuberculin skin test positive household contacts of persons with TB - 18 malnourished participants (body mass index [BMI] < 18.5 kg/m2) and 32 controls (individuals with BMI ≥ 18.5 kg/m2). Whole blood RNA-sequencing was conducted to identify differentially expressed genes (DEGs). Ingenuity Pathway Analysis was applied to the DEGs to identify top canonical pathways and gene regulators. Gene enrichment methods were then employed to score the performance of published gene signatures associated with progression from LTBI to TB. Results: Malnourished individuals had increased activation of inflammatory pathways, including pathways involved in neutrophil activation, T-cell activation and proinflammatory IL-1 and IL-6 cytokine signaling. Consistent with known association of inflammatory pathway activation with progression to TB disease, we found significantly increased expression of the RISK4 (area under the curve [AUC] = 0.734) and PREDICT29 (AUC = 0.736) progression signatures in malnourished individuals. Conclusion: Malnourished individuals display a peripheral immune response profile reflective of increased inflammation and a concomitant increased expression of risk signatures predicting progression to TB. With validation in prospective clinical cohorts, TB risk biomarkers have the potential to identify malnourished LTBI for targeted therapy.


Subject(s)
Latent Tuberculosis , Malnutrition , Tuberculosis, Pulmonary , Tuberculosis , Biomarkers , Cytokines , Humans , Inflammation , Interleukin-1 , Interleukin-6 , Latent Tuberculosis/genetics , Malnutrition/complications , Prospective Studies , RNA , Tuberculosis/genetics , Tuberculosis, Pulmonary/genetics
15.
Front Immunol ; 13: 954221, 2022.
Article in English | MEDLINE | ID: mdl-36059536

ABSTRACT

Neutrophils have been recognized to play an important role in the pathogenesis of tuberculosis in recent years. Interferon-induced blood transcriptional signatures in ATB are predominantly driven by neutrophils. In this study, we performed global RNA-seq on peripheral blood neutrophils from active tuberculosis patients (ATB, n=15); latent tuberculosis infections (LTBI, n=22); and healthy controls (HC, n=21). The results showed that greater perturbations of gene expression patterns happened in neutrophils from ATB individuals than HC or those with LTBI, and a total of 344 differentially expressed genes (DEGs) were observed. Functional enrichment analysis showed that besides the interferon signaling pathway, multiple pattern recognition receptor pathways were significantly activated in ATB, such as NOD-like receptors and Toll-like receptors. Meanwhile, we also observed that the expression of genes related to endocytosis, secretory granules, and neutrophils degranulation were downregulated. Our data also showed that the NF-κB signaling pathway might be inhibited in patients with ATB, which could increase Mycobacterium tuberculosis survival and lead to active tuberculosis status. Furthermore, we validated the accuracy of some differentially expressed genes in an independent cohort using quantitative PCR, and obtained three novel genes (RBM3, CSRNP1, SRSF5) with the ability to discriminate active tuberculosis from LTBI and HC.


Subject(s)
Latent Tuberculosis , Tuberculosis , Biomarkers , Humans , Interferons/metabolism , Latent Tuberculosis/genetics , Neutrophils/metabolism , RNA-Binding Proteins/genetics , Tuberculosis/microbiology , Exome Sequencing
16.
PLoS One ; 17(9): e0274257, 2022.
Article in English | MEDLINE | ID: mdl-36170228

ABSTRACT

OBJECTIVE: To determine the gene expression profile in individuals with new latent tuberculosis infection (LTBI), and to compare them with people with active tuberculosis (TB) and those exposed to TB but not infected. DESIGN: A prospective cohort study. Recruitment and follow-up were conducted between September 2016 to December 2018. Gene expression and data processing and analysis from April 2019 to April 2021. SETTING: Two male Colombian prisons. PARTICIPANTS: 15 new tuberculin skin test (TST) converters (negative TST at baseline that became positive during follow-up), 11 people that continued with a negative TST after two years of follow-up, and 10 people with pulmonary ATB. MAIN OUTCOME MEASURES: Gene expression profile using RNA sequencing from PBMC samples. The differential expression was assessed using the DESeq2 package in Bioconductor. Genes with |logFC| >1.0 and an adjusted p-value < 0.1 were differentially expressed. We analyzed the differences in the enrichment of KEGG pathways in each group using InterMiner. RESULTS: The gene expression was affected by the time of incarceration. We identified group-specific differentially expressed genes between the groups: 289 genes in people with a new LTBI and short incarceration (less than three months of incarceration), 117 in those with LTBI and long incarceration (one or more years of incarceration), 26 in ATB, and 276 in the exposed but non-infected individuals. Four pathways encompassed the largest number of down and up-regulated genes among individuals with LTBI and short incarceration: cytokine signaling, signal transduction, neutrophil degranulation, and innate immune system. In individuals with LTBI and long incarceration, the only enriched pathway within up-regulated genes was Emi1 phosphorylation. CONCLUSIONS: Recent infection with MTB is associated with an identifiable RNA pattern related to innate immune system pathways that can be used to prioritize LTBI treatment for those at greatest risk for developing active TB.


Subject(s)
Latent Tuberculosis , Tuberculosis , Biomarkers/metabolism , Cohort Studies , Cytokines , Gene Expression Profiling , Humans , Latent Tuberculosis/diagnosis , Latent Tuberculosis/genetics , Leukocytes, Mononuclear/metabolism , Male , Prospective Studies , RNA , Tuberculin Test
17.
J Infect ; 85(5): 534-544, 2022 11.
Article in English | MEDLINE | ID: mdl-36007657

ABSTRACT

BACKGROUND: Tuberculosis (TB) continues to be a major cause of morbidity and mortality worldwide. However, the molecular mechanism underlying immune response to human infection with Mycobacterium tuberculosis (Mtb) remains unclear. Assessing changes in transcript abundance in blood between health and disease on a genome-wide scale affords a comprehensive view of the impact of Mtb infection on the host defense and a reliable way to identify novel TB biomarkers. METHODS: We combined expression profiling by array and single cell RNA-sequencing (scRNA-seq) via 10X Genomics platform to better illustrate the immuno-related transcriptional signature of TB and explore potential diagnostic markers for differentiating TB from latent tuberculosis infection (LTBI) and healthy control (HC). FINDINGS: Pathway analysis based on differential expressed genes (DEGs) revealed that immune transcriptional profiling could effectively differ TB with LTBI and HC. Following WGCNA and PPI network analysis based on DEGs, we screened out three key immuno-related hub genes (ADM, IFIT3 and SERPING1) highly associated with TB. Further validation found only ADM expression significantly increased in TB patients in both adult and children's datasets. By comparing the scRNA-seq datasets from TB, LTBI and HC, we observed a remarkable elevated expression level and proportion of ADM in TB Myeloid cells, further supporting that ADM expression changes could distinguish patients with TB from LTBI and HC. Besides, the hsa-miR-24-3p-NEAT1-ADM-CEBPB regulation pathway might be one of the critical networks regulating the pathogenesis of TB. Although further investigation in a larger cohort is warranted, we provide useful and novel insight to explore the potential candidate genes for TB diagnosis and intervention. INTERPRETATION: We propose that the expression of ADM in peripheral blood could be used as a novel biomarker for differentiating TB with LTBI and HC.


Subject(s)
Latent Tuberculosis , Tuberculosis, Pulmonary , Tuberculosis , Adult , Biomarkers , Child , Complement C1 Inhibitor Protein/genetics , Humans , Latent Tuberculosis/diagnosis , Latent Tuberculosis/genetics , RNA-Seq , Tuberculosis/genetics , Tuberculosis, Pulmonary/diagnosis , Tuberculosis, Pulmonary/genetics
18.
Front Cell Infect Microbiol ; 12: 908144, 2022.
Article in English | MEDLINE | ID: mdl-35694534

ABSTRACT

There is an urgent need for accurate and sensitive diagnostic tools that can overcome the current challenge to distinguish individuals with latent tuberculosis infection (LTBI) from individuals with active tuberculosis (TB). Recent literature has suggested that a group of cytokines may serve as biomarkers of TB disease progression. Using a multiplex ELISA, we quantified 27 circulatory markers present within the unstimulated plasma of individuals in Durban, South Africa who were healthy (n=20), LTBI (n=13), or had active TB (n=30). RT-qPCR was performed to measure gene expression of the cytokines of interest, using RNA isolated from healthy (n=20), LTBI (n=20), or active TB (n=30). We found that at the protein level, IL-1RA, IL-6, and IP-10 were significantly more abundant in participants with active TB (p< 0.05) compared to those with LTBI individuals. IP-10 also showed the strongest association with active TB compared to healthy and LTBI at mRNA level. Our data shows that these proteins may serve as biomarkers of TB at both the protein and gene level.


Subject(s)
Latent Tuberculosis , Mycobacterium tuberculosis , Tuberculosis, Pulmonary , Tuberculosis , Biomarkers , Chemokine CXCL10/genetics , Cytokines , Humans , Latent Tuberculosis/diagnosis , Latent Tuberculosis/genetics , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , South Africa , Tuberculosis/diagnosis , Tuberculosis, Pulmonary/diagnosis
19.
Pan Afr Med J ; 41: 149, 2022.
Article in English | MEDLINE | ID: mdl-35519172

ABSTRACT

Introduction: human leukocyte antigen (HLA) class II alleles play an important role in the early immune response to tuberculosis (TB) by presenting antigenic peptides to CD4+ T cells, hence polymorphisms in those genes can influence the efficiency of the immune response to infection and progression to active disease. Methods: an analytical cross-sectional study of adult pulmonary tuberculosis (PTB) patients at Mbagathi County Hospital, Nairobi and their HHCs. Sociodemographic data were captured on questionnaires and clinical data extracted from patient files. Intravenous blood samples were drawn for interferon-gamma release assay (IGRA) to determine latent tuberculosis infection (LTBI) among HHCs, and for extraction of DNA used in typing of HLA-DQB1 and HLA-DRB1 alleles by PCR sequence specific primer amplification. Chi-square and Fisher's exact test were used to compare the HLA type II allele frequencies of LTBI negative HHCs, LTBI positive HHCs and active TB patients. Logistic regression was used to adjust for HIV status. Results: the HLA-DQB1 and HLA-DRB1 alleles were analyzed in 17 PTB and 37 HHCs. Nineteen (19) HHCs were LTBI positive, while 18 were LTBI negative. The frequency of DRB3*1 was 0.17-fold lower [95% CI=0.03-0.83] among PTB patients compared to HHCs before adjustment for HIV status (p=0.048). The frequency of the DRB5*2 allele was significantly higher (p=0.013) among PTB patients (23.5%) compared to HHCS (0.00%). After adjusting for HIV status, the frequency of DRB1*14 was 12-fold higher [95% CI=1.11-138.2] among PTB patients compared to HHCs (p=0.040). Conclusion: the higher frequencies of HLA-DRB5*2 and HLA-DRB1*14 alleles in PTB patients suggest a likely association with progression to active PTB. The higher frequency of HLA-DRB3*1 allele among LTBI negative HHCs shows its likely protective role against M. tuberculosis infection in this population.


Subject(s)
HIV Infections , Latent Tuberculosis , Mycobacterium tuberculosis , Tuberculosis, Lymph Node , Tuberculosis, Pulmonary , Adult , Alleles , Cross-Sectional Studies , Gene Frequency , HLA-DRB1 Chains/genetics , Humans , Kenya , Latent Tuberculosis/epidemiology , Latent Tuberculosis/genetics , Mycobacterium tuberculosis/genetics , Tuberculosis, Pulmonary/epidemiology , Tuberculosis, Pulmonary/genetics
20.
Microbiol Spectr ; 10(3): e0058622, 2022 06 29.
Article in English | MEDLINE | ID: mdl-35446152

ABSTRACT

Individuals with latent tuberculosis infection (LTBI) were regarded as an enormous reservoir of cases with active tuberculosis (TB). To strengthen LTBI management, biomarkers and tools are urgently required for identifying and ruling out active TB in a fast and effective way. Based on an open-label randomized controlled trial aiming to explore short-course LTBI treatment regimens, DNA methylation profiles were retrospectively detected to explore potential biomarkers, which could discriminate active TB from LTBI. The Infinium MethylationEPIC BeadChip array was used to analyze genomewide DNA methylation levels for 15 persons with LTBI who later developed active TB and for 15 LTBI controls who stayed healthy. The differentially methylated CpGs (dmCpGs) located in the promoter regions pre- and post-TB diagnosis were selected (P < 0.05 and |Δß|>0.10) and evaluated by receiver operating characteristic (ROC) analysis. Eight dmCpGs were identified to be associated with TB occurrence; six were located in hypermethylated genes (cg02493602, cg02206980, cg02214623, cg12159502, cg14593639, and cg25764570), and two were located in hypomethylated genes (cg02781074 and cg12321798). ROC analysis indicated that the area under curve (AUC) of these eight dmCpGs ranged from 0.72 to 0.84. Given 90% sensitivity, the specificity was highest for cg14593639 at 66.67%. The combination analysis indicated that "cg02206980 + cg02214623 + cg12159502 + cg12321798" showed the best performance, with an AUC of 0.88 (95% confidence interval [CI]: 0.72, 0.97), a sensitivity of 93.33% (95% CI: 70.18%, 99.66%), and a specificity of 86.67% (95% CI: 62.12%, 97.63%). Our preliminary results indicate the potential value of the DNA methylation level as a diagnostic biomarker for discriminating active disease in LTBI testing. This finding requires further verification in independent populations with large sample sizes. IMPORTANCE Approximately a quarter of the world population had been infected with Mycobacterium tuberculosis, and about 5 to 10% of these individuals might develop active disease in their lifetimes. As a critical component of the "end TB strategies," preventive treatment was shown to protect 60 to 90% of high-risk LTBIs from developing active disease. Developing new TB screening tools based on blood-based biomarkers, which could identify and rule out active TB from LTBI, are prerequisite before initialing intervention. We tried to explore potential DNA methylation diagnostic biomarkers through retrospectively detected DNA methylation profiles pre- and post-TB diagnosis. Eight dmCpGs were identified, and the combination of "cg02206980 + cg02214623 + cg12159502 + cg12321798" showed a sensitivity of 93.33% and a specificity of 86.67%. The preliminary results provided new insight into detecting the DNA methylation level as a potential tool to distinguish TB from LTBI.


Subject(s)
Latent Tuberculosis , Mycobacterium tuberculosis , Tuberculosis , Biomarkers , Case-Control Studies , DNA Methylation , Humans , Latent Tuberculosis/diagnosis , Latent Tuberculosis/genetics , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Pilot Projects , Retrospective Studies , Tuberculosis/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...